COURSE INFORMATON						
Course Title	Code	Semester	L+P+L Hour	Credits	ECTS	
Plastic Design of Steel Structures	CE 525	-	3+0+0	3	10	

Prerequisites

-

Language of Instruction	English
Course Level	Master's Degree (Second Cycle Programmes)
Course Type	Departmental Elective
Course Coordinator	Prof. Dr. Nesrin Yardımcı
Instructors	Prof. Dr. Nesrin Yardımcı
Assistants	-
Goals	The goal of this course is to provide students plastic analysis and design of steel structures and basic understanding of ductile behavior and design of steel structures.
Content	Introduction; properties of structural steel; plastic behavior at the cross-section level; concepts of plastic analysis; methods of plastic analysis; applications of plastic analysis; building codes; seismic design philosophy; energy dissipating steel systems; rotation capacity of steel beams; ductile design of steel structural systems; worked examples.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
Basic understanding of plastic behaviour of steel structures.	1,2,3,4	1,2	A,C
Basic understanding of plastic design process of steel structures.	1,2,3,4,8,9,14	1,2	A,C
Basic understanding of seismic behaviour steel structures.	1,2,3,4	1,2	A,C
Basic understanding of ductile design of steel structures.	1,2,3,4,8,9	1,2	A,C
Be acquainted with codes, and be capable of applying the provisions of the design code.	1,2,3,4,8,9,14	1,2	A,C

Teaching

Methods:	
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Introduction	Lecture Notes and Textbook			
2	Properties of structural steel	Lecture Notes and Textbook			
3	Plastic behavior at the cross-section level	Lecture Notes and Textbook			
4	Plastic behavior at the cross-section level	Lecture Notes and Textbook			
5	Concepts of plastic analysis	Lecture Notes and Textbook			
6	Methods of plastic analysis	Lecture Notes and Textbook			
7	Methods of plastic analysis	Lecture Notes and Textbook			
8	Worked examples	Lecture Notes and Textbook			
9	Midterm Exam	Lecture Notes and Textbook			
10	Seismic design philosophy	Lecture Notes and Textbook			
11	Energy dissipating steel systems	Lecture Notes and Textbook			
12	Rotation capacity of steel beams	Lecture Notes and Textbook			
13	Ductile design of steel structural systems	Lecture Notes and Textbook			
14	Ductile design of steel structural systems	Lecture Notes and Textbook			
15	Worked examples	Lecture Notes and Textbook			

RECOMMENDED SOURCES					
Lecture Notes Notes prepared by the instructor					
Textbook	 M. Bill Wong, 2015. Plastic Analysis and Design of Steel Structures. M. Bruneau, Chia-Ming Uang, Rafael Sabelli, 2011. Ductile Design of Steel Structures, 2nd Edition. 				

MATERIAL SHARING			
Documents	Lecture notes delivered to the students		
Assignments	Homeworks are returned to students after they are graded		
Exams	Exams questions are solved if demanded		

ASSESSMENT		
IN-TERM STUDIES	NUMBER	PERCENTAGE
Mid-terms	1	40
Quizzes	-	-
Assignment	6	20
Lab Work	-	-
Term Project	1	40
Total		100
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60
Total		100

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes	Contribution						
		1	2	3	4	5		
1	Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired.					٧		
2	Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application.					٧		
3	By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines.	-		_				
4	Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed.					٧		
5	Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution.							
6	Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design.					٧		

7	Has the ability to design and conduct theoretical, experimental, and model- based investigations; is able to use judgment to solve complex problems that may be faced in this process.		٧
8	Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility.		
9	Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio.		
10	Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing.		
11	Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices.		
12	Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities		

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities	Quantity	Duration (Hour)	Total Workload (Hour)				
Course Duration (Excluding the exam weeks: 12x Total course hours)	14	3	42				
Hours for off-the-classroom study (Pre-study, practice)	14	3	42				
Midterm examination	1	3	20				
Homework	6	10	60				
Project	1	40	40				
Final examination	1	3	30				
Total Work Load			234				
Total Work Load / 25 (h)			10				
ECTS Credit of the Course			10				